Library MetaRocq.SafeChecker.PCUICWfEnvImpl

(* Distributed under the terms of the MIT license. *)
From Stdlib Require Import ssreflect ssrbool.
From MetaRocq.Utils Require Import utils.
From MetaRocq.Common Require Import config uGraph EnvMap.
From MetaRocq.PCUIC Require Import PCUICAst PCUICAstUtils PCUICEquality PCUICReduction
     PCUICReflect PCUICSafeLemmata PCUICTyping PCUICGlobalEnv PCUICWfUniverses.
From MetaRocq.SafeChecker Require Import PCUICEqualityDec PCUICWfEnv.
From Equations Require Import Equations.

Class abstract_guard_impl :=
  { guard_impl : FixCoFix global_env_ext context mfixpoint term bool ;
    guard_correct : fix_cofix Σ Γ mfix, guard fix_cofix Σ Γ mfix guard_impl fix_cofix Σ Γ mfix
  }.

Definition fake_guard_impl : FixCoFix global_env_ext context mfixpoint term bool
  := fun fix_cofix Σ Γ mfixtrue.

Record reference_impl_ext {cf:checker_flags} {guard : abstract_guard_impl} := {
      reference_impl_env_ext :> global_env_ext;
      reference_impl_ext_wf :> wf_ext reference_impl_env_ext ;
      reference_impl_ext_graph := projT1 (graph_of_wf_ext reference_impl_ext_wf);
      reference_impl_ext_graph_wf := projT2 (graph_of_wf_ext reference_impl_ext_wf)
  }.

Record reference_impl {cf:checker_flags} := {
      reference_impl_env :> global_env;
      reference_impl_wf :> wf reference_impl_env ;
      reference_impl_graph := projT1 (graph_of_wf reference_impl_wf);
      reference_impl_graph_wf := projT2 (graph_of_wf reference_impl_wf)
  }.

Program Definition reference_pop {cf:checker_flags} (Σ : reference_impl) : reference_impl :=
match Σ.(declarations) with
 []Σ
 | (d::decls) ⇒
   {| reference_impl_env := {| universes := Σ.(universes); declarations := decls; retroknowledge := Σ.(retroknowledge) |} |}
end.
Next Obligation.
destruct Σ.(reference_impl_wf). sq.
destruct X as [onu ond]; split ⇒ //. rewrite <- Heq_anonymous in ond.
now depelim ond.
Qed.

Program Definition make_wf_env_ext {cf:checker_flags} {guard : abstract_guard_impl}
(Σ : reference_impl) (univs : universes_decl)
(prf : Σ0 : global_env, Σ0 = Σ wf_ext (Σ0, univs) ) : reference_impl_ext :=
{| reference_impl_env_ext := (Σ, univs);|}.

Program Global Instance canonical_abstract_env_struct {cf:checker_flags} {guard : abstract_guard_impl} :
  abstract_env_struct reference_impl reference_impl_ext :=
  {|
  abstract_env_lookup := fun Σlookup_env (reference_impl_env_ext Σ) ;
  abstract_env_leqb_level_n := fun Σleqb_level_n (reference_impl_ext_graph Σ) ;
  abstract_env_level_mem := fun Σ lLevelSet.mem l (global_ext_levels (reference_impl_env_ext Σ));
  abstract_env_guard := fun Σ fix_cofixguard_impl fix_cofix (reference_impl_env_ext Σ);
  abstract_env_ext_rel := fun X ΣΣ = reference_impl_env_ext X;
  abstract_env_init := fun cs retro H ⇒ {|
     reference_impl_env := {| universes := cs ;
                               declarations := [];
                               retroknowledge := retro |}; |} ;
  abstract_env_add_decl := fun X kn d H
    {| reference_impl_env := add_global_decl X.(reference_impl_env) (kn,d); |};
  abstract_env_is_consistent X uctx :=
   let G := reference_impl_graph X in
   let G' := add_uctx uctx G in
   wGraph.is_acyclic G' && wGraph.IsFullSubgraph.is_full_extension G G' ;
  abstract_env_add_udecl X udecl Hglobal :=
    {| reference_impl_env_ext := (X.(reference_impl_env) , udecl); |} ;
  abstract_primitive_constant := fun X tagprimitive_constant X tag;
  abstract_env_rel := fun X ΣΣ = reference_impl_env X ;
  abstract_pop_decls := reference_pop ;
 |}.
Next Obligation. sq; constructor; cbn; eauto. econstructor. Qed.
Next Obligation.
 pose proof (reference_impl_wf X). destruct (H _ eq_refl).
 sq. destruct H0. econstructor; eauto. econstructor; eauto.
  Qed.
Next Obligation.
  pose proof (reference_impl_wf X). destruct (Hglobal _ eq_refl); sq.
  now econstructor.
Qed.

(* We pack up all the information required on the global environment and graph in a
single record. *)


Record wf_env {cf:checker_flags} := {
  wf_env_reference :> reference_impl;
  wf_env_map :> EnvMap.t global_decl;
  wf_env_map_repr :> EnvMap.repr (reference_impl_env wf_env_reference).(declarations) wf_env_map;
}.

Record wf_env_ext {cf:checker_flags} {guard : abstract_guard_impl} := {
  wf_env_ext_reference :> reference_impl_ext;
  wf_env_ext_map :> EnvMap.t global_decl;
  wf_env_ext_map_repr :> EnvMap.repr (reference_impl_env_ext wf_env_ext_reference).(declarations) wf_env_ext_map;
}.

Lemma wf_env_eta {cf : checker_flags} (Σ : wf_env) :
 {| universes := Σ.(universes); declarations := Σ.(declarations); retroknowledge := Σ.(retroknowledge) |} = Σ.
Proof.
  destruct Σ ⇒ /= //. destruct reference_impl_env ⇒ //.
Qed.

Lemma wf_fresh_globals {cf : checker_flags} Σ : wf Σ EnvMap.fresh_globals Σ.(declarations).
Proof. destruct Σ as [univs Σ]; cbn.
  move⇒ [] onu; cbn. induction 1; constructor; auto. now destruct o.
Qed.

Lemma wf_env_fresh {cf : checker_flags} (Σ : wf_env) : EnvMap.EnvMap.fresh_globals Σ.(declarations).
Proof.
  destruct Σ.(reference_impl_wf).
  now eapply wf_fresh_globals.
Qed.

Lemma of_global_env_cons {cf:checker_flags} d g : EnvMap.fresh_globals (add_global_decl g d).(declarations)
  EnvMap.of_global_env (add_global_decl g d).(declarations) = EnvMap.add d.1 d.2 (EnvMap.of_global_env g.(declarations)).
Proof.
  unfold EnvMap.of_global_env. simpl. unfold KernameMapFact.uncurry.
  reflexivity.
Qed.

Program Definition wf_env_init {cf:checker_flags} {guard : abstract_guard_impl} cs retro :
  on_global_univs cs wf_env := fun H
  {|
  wf_env_reference := abstract_env_init cs retro H;
  wf_env_map := EnvMap.empty;
  |}.

Lemma reference_pop_decls_correct {cf:checker_flags} (X:reference_impl) decls
  (prf : Σ : global_env, Σ = X
   d, Σ.(declarations) = d :: decls) :
  let X' := reference_pop X in
   Σ Σ', Σ = X Σ' = X'
          Σ'.(declarations) = decls Σ.(universes) = Σ'.(universes)
          Σ.(retroknowledge) = Σ'.(retroknowledge).
Proof.
  cbn; intros; subst. specialize (prf _ eq_refl).
  unfold reference_pop. cbn. set (reference_pop_obligation_1 cf X).
  clearbody s. destruct (X.(declarations)); cbn; inversion prf; now inversion H.
Qed.

Program Definition optim_pop {cf:checker_flags} (Σ : wf_env) : wf_env :=
  match Σ.(reference_impl_env).(declarations) with
    []Σ
    | ((kn , d) :: decls) ⇒
    {| wf_env_reference := reference_pop Σ ;
        wf_env_map := EnvMap.EnvMap.remove kn Σ.(wf_env_map);
    |}
  end.

Next Obligation.
  pose proof Σ.(wf_env_map_repr). red in H.
  rewrite <- Heq_anonymous in H.
  set (Σ0 := EnvMap.of_global_env decls).
  pose proof (EnvMap.remove_add_eq decls kn d Σ0).
  PCUICSR.forward_keep H0.
  { pose proof (Σf := wf_env_fresh Σ). rewrite <- Heq_anonymous in Σf. now depelim Σf. }
  PCUICSR.forward_keep H0.
  { pose proof (Σf := wf_env_fresh Σ). rewrite <- Heq_anonymous in Σf. now depelim Σf. }
  PCUICSR.forward_keep H0.
  { red. unfold EnvMap.equal. reflexivity. }
  unfold EnvMap.repr.
  rewrite H /=. unfold KernameMapFact.uncurry; cbn.
  unfold EnvMap.add in H0.
  unfold reference_pop. cbn. set (reference_pop_obligation_1 cf _).
  clearbody s.
  destruct (declarations Σ); cbn in *; inversion Heq_anonymous; clear Heq_anonymous s.
  subst. unfold KernameMapFact.uncurry in *; cbn in ×.
  unfold Σ0 in × ; clear Σ0. unfold EnvMap.equal, KernameMap.Equal in H0.
  specialize (H0 y). cbn in H0. rewrite H0. reflexivity.
Qed.

Program Global Instance optimized_abstract_env_struct {cf:checker_flags} {guard : abstract_guard_impl} :
  abstract_env_struct wf_env wf_env_ext :=
 {|
 abstract_env_lookup := fun Σ kEnvMap.lookup k (wf_env_ext_map Σ);
 abstract_env_leqb_level_n X := abstract_env_leqb_level_n X.(wf_env_ext_reference);
 abstract_env_level_mem X := abstract_env_level_mem X.(wf_env_ext_reference);
 abstract_env_guard := fun Σ fix_cofixguard_impl fix_cofix (wf_env_ext_reference Σ);
 abstract_env_ext_rel X := abstract_env_ext_rel X.(wf_env_ext_reference);

 abstract_env_init := wf_env_init;
 abstract_env_add_decl X kn d H :=
  {| wf_env_reference := @abstract_env_add_decl _ _ reference_impl_ext _ X.(wf_env_reference) kn d H ;
     wf_env_map := EnvMap.add kn d X.(wf_env_map) |};
 abstract_env_is_consistent X uctx := abstract_env_is_consistent X.(wf_env_reference) uctx;
 abstract_env_add_udecl X udecl Hdecl :=
 {| wf_env_ext_reference := @abstract_env_add_udecl _ _ reference_impl_ext _ X.(wf_env_reference) udecl Hdecl ;
    wf_env_ext_map := X.(wf_env_map) |};
 abstract_primitive_constant X := abstract_primitive_constant X.(wf_env_ext_reference);
 abstract_env_rel X := abstract_env_rel X.(wf_env_reference) ;
 abstract_pop_decls := optim_pop ;
 |}.
Next Obligation.
  pose proof (X.(wf_env_reference).(reference_impl_wf)) as [?].
  sq. destruct (H _ eq_refl).
  apply EnvMap.repr_add; eauto; try eapply wf_fresh_globals; eauto.
  destruct X1; eauto.
  apply wf_env_map_repr.
Qed.
Next Obligation. apply wf_env_map_repr. Qed.

Section WfEnv.
  Context {cf : checker_flags} {guard : abstract_guard_impl}.

  Definition reference_impl_sq_wf (Σ : reference_impl_ext) : wf Σ .
  Proof using Type.
    destruct (reference_impl_ext_wf Σ).
    sq. apply X.
  Qed.

  Definition lookup (Σ : wf_env_ext) (kn : kername) : option global_decl :=
    EnvMap.lookup kn Σ.(wf_env_ext_map).

  Lemma lookup_lookup_env Σ kn : lookup Σ kn = lookup_env Σ kn.
  Proof using Type.
    rewrite /lookup. destruct Σ as [Σ map repr]. pose (reference_impl_sq_wf Σ).
    sq. apply EnvMap.lookup_spec; auto. now eapply wf_fresh_globals.
  Qed.

End WfEnv.

Create HintDb wf_env discriminated.
Global Hint Constants Opaque : wf_env.
Global Hint Variables Opaque : wf_env.

Global Hint Resolve reference_impl_ext_wf : wf_env.
Global Hint Resolve reference_impl_wf : wf_env.

Definition Σudecl_ref {cf : checker_flags} {guard : abstract_guard_impl} (Σ : reference_impl_ext) :
   on_udecl Σ.(reference_impl_env_ext).1 Σ.(reference_impl_env_ext).2 :=
    map_squash (fun xx.2) Σ.

Definition Σudecl {cf : checker_flags} {guard : abstract_guard_impl} (Σ : wf_env_ext) :
   on_udecl Σ.(reference_impl_env_ext).1 Σ.(reference_impl_env_ext).2 :=
  map_squash (fun xx.2) Σ.

  Global Hint Resolve Σudecl : wf_env.

Ltac wf_env := auto with wf_env.

Build an optimized environment representation for lookups along with the graph associated to a well-formed global environment. The graph building is separated, so that (build_wf_env_ext Σ wfΣ).(wf_env_ext_env) is convertible to Σ.

Definition build_wf_env_ext {cf : checker_flags} {guard : abstract_guard_impl} (Σ : global_env_ext) (wfΣ : wf_ext Σ ) : wf_env_ext :=
  {| wf_env_ext_reference :=
      {| reference_impl_env_ext := Σ; reference_impl_ext_wf := wfΣ |} ;
     wf_env_ext_map := EnvMap.of_global_env Σ.(declarations);
     wf_env_ext_map_repr := EnvMap.repr_global_env Σ.(declarations);
|}.

Section GraphSpec.
  Context {cf:checker_flags} {guard : abstract_guard_impl} {Σ : global_env_ext} ( : wf Σ )
      (Hφ : on_udecl Σ.1 Σ.2 )
      (G : universes_graph) (HG : is_graph_of_uctx G (global_ext_uctx Σ)).

  Local Definition HΣ' : wf_ext Σ .
  Proof.
    destruct , Hφ; now constructor.
  Qed.

  Lemma is_graph_of_uctx_levels (l : Level.t) :
    LevelSet.mem l (uGraph.wGraph.V G)
    LevelSet.mem l (global_ext_levels Σ).
  Proof using HG.
    unfold is_graph_of_uctx in HG.
    case_eq (gc_of_uctx (global_ext_uctx Σ)); [intros [lvs cts] XX|intro XX];
      rewriteXX in *; simpl in *; [|contradiction].
    unfold gc_of_uctx in XX; simpl in XX.
    destruct (gc_of_constraints Σ); [|discriminate].
    inversion XX; subst.
    unfold is_true. rewrite !LevelSet.mem_spec.
    symmetry. apply HG.
  Qed.

End GraphSpec.

Program Global Instance canonical_abstract_env_prop {cf:checker_flags} {guard : abstract_guard_impl} :
  @abstract_env_prop _ _ _ canonical_abstract_env_struct :=
     {| abstract_env_ext_exists := fun Σsq (reference_impl_env_ext Σ ; eq_refl); |}.
Next Obligation. wf_env. Qed.
Next Obligation. now sq. Qed.
Next Obligation. wf_env. Qed.
Next Obligation. now split. Qed.
Next Obligation.
  apply (reference_pop_decls_correct X decls prf X (reference_pop X) eq_refl eq_refl).
Qed.
Next Obligation.
  epose proof ( := reference_impl_ext_wf X). sq.
  apply lookup_global_Some_iff_In_NoDup ⇒ //.
  destruct as [[] _]. now eapply NoDup_on_global_decls.
Qed.
Next Obligation.
  pose proof (reference_impl_ext_wf X); sq.
  set (uctx := wf_ext_gc_of_uctx _) in *; destruct uctx as [[lc ctrs] Huctx].
  assert (consistent (global_ext_uctx X).2) as HC.
      { sq; apply (global_ext_uctx_consistent _ H). }
  simpl in HC. apply gc_consistent_iff in HC.
  eapply leqb_level_n_spec; eauto.
    + eapply gc_of_uctx_invariants; try eapply wf_ext_global_uctx_invariants; eauto.
    + clear Hl Hl'. Opaque gc_of_constraints. cbn in ×. Transparent gc_of_constraints.
      destruct (gc_of_constraints X); inversion Huctx. now destruct H2.
    + unfold reference_impl_ext_graph; cbn.
      set (G := graph_of_wf_ext _); destruct G as [G HG].
      cbn. unfold is_graph_of_uctx in HG. now rewrite Huctx in HG.
Qed.
Next Obligation. pose (reference_impl_ext_wf X). sq. symmetry; apply LevelSet.Raw.mem_spec. typeclasses eauto. Defined.
Next Obligation.
  pose (reference_impl_wf X). sq.
  rename H0 into Hudecl. rename H1 into Hudecl'.
  assert (H0 : global_uctx_invariants (global_uctx X)).
  { eapply wf_global_uctx_invariants; eauto. }
  set (udecl := (t , t0)).
  assert (H1 : global_uctx_invariants (ContextSet.union udecl (global_uctx X))).
  { split ⇒ //.
    - apply LevelSet.union_spec; right ; now destruct H0.
    - intros [[l ct] l'] [Hl|Hl]%CS.union_spec.
      + now specialize (Hudecl _ Hl).
      + destruct H0 as [_ H0]. specialize (H0 _ Hl).
        split; apply LevelSet.union_spec; right;
        now cbn in H0.
     }
  unfold reference_impl_graph; rewrite andb_and.
  pose proof (reference_impl_graph_wf X) as HG.
  set (gph := (graph_of_wf X).π1) in ×. clearbody gph. simpl in HG.
  pose proof (HG' := is_graph_of_uctx_add Hudecl' HG).
  pose (global_ext_uctx := ContextSet.union udecl (global_uctx X)).
  pose (wf_consistent_extension_on_consistent udecl.2 s).
  assert (reorder : a a' b c : Prop, (b a) (a b a' c) b a' c) by intuition; eapply reorder; try eassumption; clear reorder.
  rewrite - (is_consistent_spec global_ext_uctx) (is_consistent_spec2 HG').
  assert (reorder : a b c : Prop, (a b c) a b a c) by intuition; apply reorder.
  move⇒ ?; rewrite consistent_extension_on_union.
  1:{ pose proof (reference_impl_wf X); sq.
      apply: PCUICUnivSubstitutionConv.levels_global_constraint. }
  cbn.
  change (CS.union _ _) with global_ext_uctx.2.
  apply: consistent_ext_on_full_ext⇒ //.
  apply: add_uctx_subgraph.
Qed.
Next Obligation. apply guard_correct. Qed.

Program Global Instance optimized_abstract_env_prop {cf:checker_flags} {guard : abstract_guard_impl} :
  @abstract_env_prop _ _ _ optimized_abstract_env_struct :=
     {| abstract_env_ext_exists := fun Σsq (reference_impl_env_ext Σ ; eq_refl); |}.
Next Obligation. wf_env. Qed.
Next Obligation. now sq. Qed.
Next Obligation. wf_env. Qed.
Next Obligation. now split. Qed.
Next Obligation. unfold optim_pop. set (optim_pop_obligation_1 cf X). clearbody r.
  pose proof (reference_pop_decls_correct X decls prf X (reference_pop X) eq_refl eq_refl).
  specialize (prf _ eq_refl).
  destruct (declarations X); cbn; inversion prf; inversion H0. subst.
  now destruct x.
Qed.
Next Obligation.
  epose proof ( := reference_impl_ext_wf X). sq.
  etransitivity; try apply abstract_env_lookup_correct ⇒ //.
  assert (lookup_env X kn = EnvMap.lookup kn X).
  { erewrite EnvMap.lookup_spec; try reflexivity.
    1: apply wf_fresh_globals; eauto.
    1: apply wf_env_ext_map_repr. }
  now rewrite <- H.
Qed.
Next Obligation.
    revert n l l' Hl Hl'. erewrite wf_ext_gc_of_uctx_irr.
    exact (abstract_env_leqb_level_n_correct X.(wf_env_ext_reference) eq_refl).
Qed.
Next Obligation.
  now erewrite (abstract_env_level_mem_correct X.(wf_env_ext_reference)).
Qed.
Next Obligation.
  now erewrite (abstract_env_is_consistent_correct X.(wf_env_reference)) with (udecl := (t,t0)); eauto.
Qed.
Next Obligation. eapply guard_correct. Qed.

Definition canonical_abstract_env_impl {cf:checker_flags} {guard : abstract_guard_impl} : abstract_env_impl :=
  (reference_impl ; reference_impl_ext ; canonical_abstract_env_struct ; canonical_abstract_env_prop).

Definition optimized_abstract_env_impl {cf:checker_flags} {guard : abstract_guard_impl} : abstract_env_impl :=
  (wf_env; wf_env_ext ; optimized_abstract_env_struct ; optimized_abstract_env_prop).

Definition build_wf_env_from_env {cf : checker_flags} (Σ : global_env) (wfΣ : PCUICTyping.wf Σ ) : wf_env
  :=
  let Σm := EnvMap.of_global_env Σ.(declarations) in
  {| wf_env_reference := {| reference_impl_env := Σ; reference_impl_wf := wfΣ |} ;
     wf_env_map := Σm;
     wf_env_map_repr := EnvMap.repr_global_env Σ.(declarations);
 |}.